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The Sony Playstation

• Are graphics trends a glimpse of the future?
• The PlayStation2 architecture

—32MB RAM, 300Mhz, 6.2GFLOP
—Streaming, custom serial streams
—Cheaper to compute than to store

• The PlayStation3 (from the patent)
—Core component is a cell 

• 1 PowerPC CPU + 8 APUs (“vectorial” processors) 
• 4GHz, 128K RAM, 256GFLOP/cell
• Building block for multimedia framework

—Multiple cells 
• Probably a four cell architecture (1TFLOP)
• Central 64MB memory
• Switched 1024 bit bus, optical links?
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Hardware Trends From Graphics 

• Cheap FLOPS and MIPS
—GeForceFX: 96 IEEE 32bit units @ 500Mhz
—Custom computation (e.g. MPEG)

• CPU clock speeds soaring
—“Vector” clocks only slightly slower

• Memory
—Not keeping pace with clock speeds
—Data access specific caches (e.g. pixel tiles)

• External pipeline bottlenecks (e.g. AGP, PCI, network)
—Multiple, custom paths between units

• Micro-programmable hardware
—Fragment, vertex programs
— Image and sound filters
—Network stacks in NICs
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So what’s new?

• Applications and standards
—Multimedia: video and audio

• MPEG, DCTs, FFTs
—Gaming graphics

• Ploygons, multi-texturing, vectors
—Common APIs 

• Very focused functionality
– OpenGL, Direct3D, DirectShow

• Domain specific programming being exposed

• There is a huge market for these systems
—Hardware is cheap and ubiquitous
—Vendors looking to differentiate

• Can we leverage this amazing horsepower, in a scalable fashion?
—Computational “streaming”
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The Streaming Programming model

• Streaming exposes concurrency and latency at the system level as
part of the programming target

• Data moves through the system: exposed concurrency
—Avoid global communication: prefer implicit models (e.g. Cr)

• Memory model: exposed latency/bandwidth
—Scalable, must support very small footprints
—Distributed, implicit flow between each operation

• A working model:
—Computational elements + caching and bandwidth constraints
—External “oracle” for system characterization and realization

• Goals:
—Optimally trade off computation for critical bandwidth
—Leverage traditionally “hidden” programmable elements
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Streaming Impacts on Software Design

• How does one target this model?
— Integrated data structure and algorithm design

• Run-time targets
• Algorithm remapping

—“Intent” expressive and architecture aware
• Abstract run-time compiled languages

—Memory design is key
• “Small” memory models, out-of-core design
• “Cache oblivious” data flow

• Implementations
—New languages: Cg, Brook, DSP-C, Stream-C
—Hidden beneath layers of API: OpenGL, Chromium, Lustre

• It sounds like a lot of work, what can really be gained?
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250Mhz SGI Onyx (1024x1024)
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Multiresolution Array Access From VISUS

• Arbitrary, multi-resolution array data access
• Integrated algorithm/data structure design

—Data “reordering” on a spacefilling curve
• In place transformation
• Reordering is a simple bit manipulation

—Cache oblivious
• Arbitrary blocking is supported

—Coupled asynchronous query system
• Parallel rendering and queries
• RAM used as a cache

• Example
—Slicing 8B cells
—15MB RAM
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IOW/A: Neuroanatomic Data Streaming

• Work at the University of Iowa, Department of Neurology
—With: Brent Eaton, Lizann Bolinger, Thomas Grabowski

• Goal: A system capable of real-time analysis of cognitive function.
—Allow direct investigation into individual’s cognitive process
— Interactive experiments and statistical testing of specific hypotheses

• Design:
—Single data stream interface
—Arbitrary sample timing
—Fixed memory footprints
— Incremental algorithms
—Progressive alignment
—Multiple systems
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Insight Into The Working Human Mind

• First complete real-time system of its type 
—Performance envelope easily met by streaming (71ms/slice)
—Lower resource requirements that previous off-line systems

• A PC, a Sun and an SGI Octane vs a Cray T3E
—Nearly optimal use of parallel, distributed resources

• Unique features:
— Integrated 3D alignment (fixed temporal window)
—Feedback for optimal acquisition or “Experimental Steering”
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Where does this lead?

• Computation and memory caches everywhere
—PDAs, NICs, Drive controllers, Switches, Cell Phones
—Potentially enormous “wall clock” performance gains

• Utilizing them may require a disruptive shift
—New languages with higher levels of abstractions
—Run-time “realization”, dynamic compilation and scheduling
—Cache oblivious algorithms

• Challenges with the opportunities
—Portability: how much work to retarget
—Longevity: what are the implementation windows
—Robustness: more points of failure
—Debugging

• More “conceptual” errors, but distributed systems & embedded systems
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